MEDICI: Mining Essentiality Data to Identify Critical Interactions for Cancer Drug Target Discovery and Development
نویسندگان
چکیده
Protein-protein interactions (PPIs) mediate the transmission and regulation of oncogenic signals that are essential to cellular proliferation and survival, and thus represent potential targets for anti-cancer therapeutic discovery. Despite their significance, there is no method to experimentally disrupt and interrogate the essentiality of individual endogenous PPIs. The ability to computationally predict or infer PPI essentiality would help prioritize PPIs for drug discovery and help advance understanding of cancer biology. Here we introduce a computational method (MEDICI) to predict PPI essentiality by combining gene knockdown studies with network models of protein interaction pathways in an analytic framework. Our method uses network topology to model how gene silencing can disrupt PPIs, relating the unknown essentialities of individual PPIs to experimentally observed protein essentialities. This model is then deconvolved to recover the unknown essentialities of individual PPIs. We demonstrate the validity of our approach via prediction of sensitivities to compounds based on PPI essentiality and differences in essentiality based on genetic mutations. We further show that lung cancer patients have improved overall survival when specific PPIs are no longer present, suggesting that these PPIs may be potentially new targets for therapeutic development. Software is freely available at https://github.com/cooperlab/MEDICI. Datasets are available at https://ctd2.nci.nih.gov/dataPortal.
منابع مشابه
Expert Discovery: A web mining approach
Expert discovery is a quest in search of finding an answer to a question: “Who is the best expert of a specific subject in a particular domain within peculiar array of parameters?” Expert with domain knowledge in any field is crucial for consulting in industry, academia and scientific community. Aim of this study is to address the issues for expert-finding task in real-world community. Collabor...
متن کاملOGEE v2: an update of the online gene essentiality database with special focus on differentially essential genes in human cancer cell lines
OGEE is an Online GEne Essentiality database. To enhance our understanding of the essentiality of genes, in OGEE we collected experimentally tested essential and non-essential genes, as well as associated gene properties known to contribute to gene essentiality. We focus on large-scale experiments, and complement our data with text-mining results. We organized tested genes into data sets accord...
متن کاملبررسی کاربردهای داده کاوی در نظام سلامت
Introduction: Extensive amounts of data stored in medical databases require the development of specialized tools for accessing the data, data analysis, knowledge discovery, and the effective use of the data. Data mining is one of the most important methods. The article sketches the used Data Mining techniques, and illustrates their applicability to medical diagnostic and prognostic problems. ...
متن کاملProteomics Applications in Health: Biomarker and Drug Discovery and Food Industry
Advancing in genome sequencing has greatly propelled the understanding of the living world, however, it is insufficient for full description of a biological system. Focusing on, proteomics has emerged as another large-scale platform for improving the understanding of biology. Proteomic experiments can be used for different aspects of clinical and health sciences such as food technology, biomark...
متن کاملProteomics Applications in Health: Biomarker and Drug Discovery and Food Industry
Advancing in genome sequencing has greatly propelled the understanding of the living world, however, it is insufficient for full description of a biological system. Focusing on, proteomics has emerged as another large-scale platform for improving the understanding of biology. Proteomic experiments can be used for different aspects of clinical and health sciences such as food technology, biomark...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2017